If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+5x-650=0
a = 1; b = 5; c = -650;
Δ = b2-4ac
Δ = 52-4·1·(-650)
Δ = 2625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2625}=\sqrt{25*105}=\sqrt{25}*\sqrt{105}=5\sqrt{105}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-5\sqrt{105}}{2*1}=\frac{-5-5\sqrt{105}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+5\sqrt{105}}{2*1}=\frac{-5+5\sqrt{105}}{2} $
| 2x–4=4+100 | | y=1/2=2 | | 0.5(4x+1)+(2x+1)=13 | | 2x-6+9=-50 | | 0=(2/(x^-3))-(1/(4(x^-1.5))) | | 0=(2(x^-3))-(1/(4(x^-1.5))) | | 0=(2(x^-3))-)-(1/(4(x^-1.5))) | | v=1,4-2,5 | | 0=2(x^-3)-4(x^-1.5) | | 6p=1200 | | 3y-9/8=21 | | 12+5d-d-4=7 | | 3x/4+2x/5=7 | | 0=(-2(x^-3))-(4(x^-1.5)) | | 0=-2(x^-3)-4(x^-1.5) | | 10y+10=18.89 | | 10y+10=1 | | 5+4(19+x)=113 | | 8x+20=6x-14 | | 8m=600 | | −3+y=7 | | -2(2×+3)=4x+6 | | -1=y=-9 | | (3)^x=162 | | .35x+.15x=18 | | 3.w=14.7 | | 5n+4=15+2 | | 23m=207 | | 7-5x=5-7x-7 | | 2y-5=-10+3y | | (4x+3)/4-(x-(2x-1)/3)=x+1/3 | | 8-7x=6+9x |